## Analysis \& Approaches SL

 do not consider this an exhaustive list

| Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Comments $\quad$ (

## Chapter 1: The Binomial Theorem

| Investigation 1 | 18 |  |  |  |  |  | Connects the binomial expansion to Pascal's triangle. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 2 | 21-22 |  |  |  |  |  | Explains the formula for the binomial coefficient using combinations. |
| Investigation 3 | 22 |  |  |  |  |  | Allows students to understand the binomial coefficient by studying Pascal's triangle. |
| Historical note | 26 | Functions |  |  |  | Sir Isaac Newton | Introduces the idea of a binomial expansion for rational powers. |



## Chapter 5: Exponential functions

|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 1 | 128 | Transformation <br> of functions |  |  |  |  | Comments <br> Builds on from the transformation of functions chapter to <br> give conceptual understanding of the general exponential <br> function. |
| Investigation 2 | $138-139$ | Compound <br> interest |  |  |  | This investigation gives a pre-limits derivation of the <br> natural exponential $e$ by considering compound interest <br> compounding at a faster and faster rate. |  |
| Historical note | 139 | Continued <br> fractions |  |  |  | Jacob Bernoulli, <br> Leonhard Euler | Exact representations of the irrational number $e$. |

Chapter 6: Logarithms

| Theory of Knowledge | $156-157$ |  | Physics | Scotland |  | John Napier | Nature of <br> mathematics | Do we invent or discover mathematics? <br> Is mathematics a collaborative effort? <br> Why is pure mathematics important? |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Investigation 3 | $167-168$ |  | Music, <br> Physics, <br> Geology, <br> Chemistry |  |  |  | Logarithmic scales are widely used to understand the real <br> world. In this Investigation we explore: musical notes, <br> the Richter scale for earthquakes, the pH scale for acidity, <br> and the decibel scale for sound intensity. |  |

## Chapter 7: The unit circle and radian measure

| Theory of Knowledge | $180-181$ |  | Ancient <br> Babylon |  | The nature of <br> mathematics | Is mathematics natural? <br> What mathematical things are arbitrarily chosen? <br> What are the benefits of global standardisation? |
| :--- | :---: | :--- | :--- | :---: | :--- | :--- | :--- |
| Discussion | 186 |  |  |  | Trigonometric <br> identities |  |

Chapter 8: Trigonometric functions

| Opening Problem | 200 | Radian measure |  |  |  | For 40 years, Haese Mathematics has been using the <br> classic real-world example of a light on a Ferris wheel to <br> motivate the study of trigonometric functions. |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| Historical note | 201 |  | Physics |  |  | Michael Faraday |  |
| Investigation | 206 | Transformation <br> of functions |  |  |  |  | Builds ongnetic application of the sine wave. <br> understanding of the earlier chapter to give conceptual sine function. |
| Research | 215 | Modelling (A\&I) | Astronomy, <br> Geography |  |  | Sir Isaac Newton | Possible Mathematical Exploration such as modelling <br> sunrise and sunset at a particular latitude over time <br> assuming level ground. (This is non-trivial!) |
| Activity 2 | 216 | Modelling (A\&I) | Physics |  |  |  | Hands on activity demonstrating the physical and <br> mathematical properties of a pendulum |

## Chapter 9: Trigonometric equations and identities

|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exercise 9D q13 | 240 |  |  |  |  |  | Derivation of the important identities for (cos $x)^{\wedge} 2$ and <br> $($ sin x$) \wedge 2$ used in their integration. |  |
| Investigation 2 | 241 |  |  |  |  | Parametric equations are a fun opportunity for <br> exploration. |  |  |



Chapter 11: Introduction to differential calculus

| Theory of Knowledge | 271 | Physics | Ancient <br> Greece |  | Zeno of Elea | Paradoxes |  |  |
| :--- | :---: | :--- | :--- | :---: | :--- | :---: | :---: | :---: |
| Historical note | 275 |  |  | Ancient <br> Egypt, <br> Ancient <br> Greece, <br> Europe |  |  | Democritus, <br> Eudoxus, <br> Archimedes, <br> Johann Bernoulli, <br> Isaac Barrow |  |

Chapter 12: Rules of differentiation

| Opening Problem | 286 | Transformation <br> of functions |  |  | The transformation of functions previously studied can <br> give clues to the relationships between derivative <br> functions. |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| Investigation 1 | $286-287$ | Binomial <br> expansion |  |  |  | Uses first principles and the binomial expansion with <br> integer powers to deduce the derivative of terms of the <br> form a*x^n where $n$ is a positive integer. |
| Investigation 2 | $292-293$ |  |  |  |  | Leads to the chain rule. |


|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Investigation 3 | 295 |  |  |  |  | Comments |  |
| Investigation 4 | 300 (link) <br> 301 (link) |  |  |  |  | Leads to the product rule. |  |
| Investigation 5 | 303 (link) |  |  |  |  | Leads to the derivative of $\mathrm{e}^{\wedge} \mathrm{x}$. |  |
| Investigation 6 | 306 |  |  |  |  |  | Leads to the derivative of $\ln \mathrm{x}$. |
| Investigation 7 |  |  |  |  |  | Leads to the derivatives of sin x and cos x. |  |

## Chapter 13: Properties of curves

## Chapter 14: Applications of differentiation



Chapter 15: Introduction to integration

| Opening Problem | 366 |  | Physics |  | Archimedes |  | We begin the study of integration by following its historical development. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation 1 | 368 | Series, Limits |  |  |  |  | Using series formulae, we prove Archimedes' result for the area under $\mathrm{y}=\mathrm{x}^{\wedge} 2$ on the interval $0<\mathrm{x}<1$. |
| Historical note | 369 |  |  | Italy | Bonaventura Cavalieri |  |  |
| Historical note | 370 |  |  |  | Sir Isaac Newton, Gottfried Wilhelm Leibniz, Bernhard Riemann | Parallel development | The progression from Archimedes to modern calculus was only possible with the introduction of limits. |
| Exercise 15B q3 | 371 |  |  |  |  |  | Links to the standard normal deviation and the proportion of data within 3 standard deviations of the mean. |

Chapter 16: Techniques for Integration


## Chapter 17: Definite Integrals

|  | Page | Topic link | Subject link | International <br> link | Cultural link | Historic link | TOK link | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity 2 | $418-419$ | Probability |  |  |  | Georges-Louis <br> Leclerc, Comte de <br> Buffon |  | First historical application of calculus to probability. |


| Discussion | 427 | Vectors | Physics |  |  |  | From the outset, students can discuss the terminology they have for motion, and how the physics and mathematics relate. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Investigation | 443-444 | Vectors | Physics | England, Italy | Galileo Galilei | Ethics | The study of projectile motion was driven by its applications in war. Does this negate the virtue of its study? |

Chapter 19: Bivariate statistics

| Historical note | 455 |  |  |  |  | Karl Pearson, Sir <br> Francis Galton |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Activity 2 | 468 |  |  | England |  | Francis <br> Anscombe |  |  |
| Theory of Knowledge | $469-470$ |  | Biology, <br> Environmental <br> Science | Japan, Global |  |  | Modelling |  |
| Theory of Knowledge | 474 |  |  |  | Equality and <br> Discrimination |  | Equality |  |

## Chapter 20: Discrete random variables

| Activity | 491 |  |  | Game strategy |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Investigation 1 | 495 |  |  |  |  | Use of technology to investigate the binomial distribution. |  |
| Investigation 2 | 498 |  |  |  |  |  |  |

## Chapter 21: The normal distribution

| Historical note | 510 |  |  |  | Carl Friedrich <br> Gauss |  |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Investigation 4 | 527 |  |  |  |  |  |  | The normal approximation to the binomial distribution. |

