Analysis & Approaches SL

This table records some of the elements of the Analysis & Approaches SL book which are particularly "IB", or which are interesting "features". They are definitely things to look out for, but please do not consider this an exhaustive list.

Page	Topic link	Subject link	International	Cultural link	Historic link	TOK link	Comments
	_	-	link				

Chapter 1: The Binomial Theorem

Investigation 1	18				Connects the binomial expansion to Pascal's triangle.
Investigation 2	21-22				Explains the formula for the binomial coefficient using combinations.
Investigation 3	22				Allows students to understand the binomial coefficient by studying Pascal's triangle.
Historical note	26	Functions		Sir Isaac Newton	Introduces the idea of a binomial expansion for rational powers.

Chapter 2: Quadratic Functions

Opening Problem	30	Physics	Parabolic mirror, focal point, law of reflection – this theme is continued in Investigation 4.
Activity 1	30		Conic sections
Investigation 1 Investigation 2 Investigation 3	33-34 34 46-47		Practical investigation for developing understanding of how graphs relate to the form of a function. Method of second differences
Investigation 3	55-56	Physics	Links the geometric definition of a parabola to its
investigation 1			algebraic form. Carries on the theme of the parabolic mirror from the Opening Problem, applying the law of reflection to explain the focal point.

Chapter 3: Functions

Theory of Knowledge	93	Computer	Language:	Backus-Naur form for the syntax of programming
		Science	syntax and	languages.
			semantics	How can you record algebra in digital form?

Chapter 4: Transformations of functions

Opening Problem	100	Quadratics,		Builds directly on the previous two chapters, constructing
		Functions		a link to transformations.

Chapter 5: Exponential functions

	Page	Topic link	Subject link		Cultural link	Historic link	TOK link	Comments
				link				
Investigation 1	128	Transformation						Builds on from the transformation of functions chapter to
-		of functions						give conceptual understanding of the general exponential
								function.
Investigation 2	138-139	Compound						This investigation gives a pre-limits derivation of the
-		interest						natural exponential <i>e</i> by considering compound interest
								compounding at a faster and faster rate.
Historical note	139	Continued				Jacob Bernoulli,		Exact representations of the irrational number <i>e</i> .
		fractions				Leonhard Euler		

Chapter 6: Logarithms

			~			
Theory of Knowledge	156-157	Physics	Scotland	John Napier	Nature of	Do we invent or discover mathematics?
					mathematics	Is mathematics a collaborative effort?
						Why is pure mathematics important?
Investigation 3	167-168	Music,				Logarithmic scales are widely used to understand the real
-		Physics,				world. In this Investigation we explore: musical notes,
		Geology,				the Richter scale for earthquakes, the pH scale for acidity,
		Chemistry				and the decibel scale for sound intensity.

Chapter 7: The unit circle and radian measure

Theory of Knowledge	180-181	Ancient Babylon	The nature of Is mathematics natural? mathematics What mathematical things are arbitrarily chosen? What are the benefits of global standardisation?
Discussion	186		Trigonometric identities

Chapter 8: Trigonometric functions

Opening Problem	200	Radian measure			For 40 years, Haese Mathematics has been using the classic real-world example of a light on a Ferris wheel to motivate the study of trigonometric functions.
Historical note	201		Physics	Michael Faraday	Electromagnetic application of the sine wave.
Investigation	206	Transformation of functions			Builds on from the earlier chapter to give conceptual understanding of the general sine function.
Research	215	Modelling (A&I)	Astronomy, Geography	Sir Isaac Newton	Possible Mathematical Exploration such as modelling sunrise and sunset at a particular latitude over time assuming level ground. (This is non-trivial!)
Activity 2	216	Modelling (A&I)	Physics		Hands on activity demonstrating the physical and mathematical properties of a pendulum

Chapter 9: Trigonometric equations and identities

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Exercise 9D q13	240							Derivation of the important identities for $(\cos x)^2$ and $(\sin x)^2$ used in their integration.
Investigation 2	241							Parametric equations are a fun opportunity for exploration.

Chapter 10: Reasoning and proof

Exercise 10A q6	249		Peter Wason		Classic problem of logic.
Exercise 10B q9	252				Identifying incorrect steps in proofs is extremely effective
Exercise 10C q7	255				in developing conceptual understanding.
Review set 10B q8	260				
Historical note	252	England	Charles Dodgson	Logic	
Exercise 10C q8	255				Students should recognise the difference between deduction and equivalence. This question explores an example used incorrectly in the syllabus (2019).
Theory of Knowledge	256			Proof	How do our definitions and our use of words affect proofs and our mathematical understanding? When we assess algebraic solutions, we may allow expressions which are <i>equal</i> and are <i>equivalent</i> (to a given level of simplicity) but which are not the <i>same</i> as the listed solution.
Theory of Knowledge	258-259		Kurt Gödel, Pierre de Fermat		What is an axiom? Why are axioms necessary in mathematics?

Chapter 11: Introduction to differential calculus

Theory of Knowledge	271	Physics	Ancient	Zeno of Elea	Paradoxes
			Greece		
Historical note	275		Ancient	Democritus,	
			Egypt,	Eudoxus,	
			Ancient	Archimedes,	
			Greece,	Johann Bernoulli,	
			Europe	Isaac Barrow	

Chapter 12: Rules of differentiation

Opening Problem	286	Transformation of functions	The transformation of functions previously studied can give clues to the relationships between derivative functions.
Investigation 1	286-287	Binomial expansion	Uses first principles and the binomial expansion with integer powers to deduce the derivative of terms of the form a^*x^n where n is a positive integer.
Investigation 2	292-293		Leads to the chain rule.

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Investigation 3	295							Leads to the product rule.
Investigation 4	300 (link)							Leads to the derivative of e ^x .
Investigation 5	301 (link)							
Investigation 6	303 (link)							Leads to the derivative of ln x.
Investigation 7	306							Leads to the derivatives of sin x and cos x.

Chapter 13: Properties of curves

Chapter 14: Applications of differentiation

Theory of Knowledge	359	Physics	Ibn Sahl, Willebrord Snellius, René	
			Descartes	
Activity	360-361	Graphic Design, Engineering		Cubic splines are a popular and useful modelling tool.

Chapter 15: Introduction to integration

Opening Problem	366		Physics		Archimedes		We begin the study of integration by following its historical development.
Investigation 1	368	Series, Limits					Using series formulae, we prove Archimedes' result for the area under $y = x^2$ on the interval $0 < x < 1$.
Historical note	369			Italy	Bonaventura Cavalieri		
Historical note	370				Sir Isaac Newton, Gottfried Wilhelm Leibniz, Bernhard Riemann	development	The progression from Archimedes to modern calculus was only possible with the introduction of limits.
Exercise 15B q3	371						Links to the standard normal deviation and the proportion of data within 3 standard deviations of the mean.

Chapter 16: Techniques for Integration

Exercise 16A	383-384			This Exercise is built as an Investigation leading to the
				rules of integration.

Chapter 17: Definite Integrals

	Page	Topic link	Subject link	International link	Cultural link	Historic link	TOK link	Comments
Activity 2	418-419	Probability				Georges-Louis Leclerc, Comte de		First historical application of calculus to probability.
						Buffon		

Chapter 18: Kinematics

Discussion	427	Vectors	Physics					From the outset, students can discuss the terminology they have for motion, and how the physics and mathematics relate.
Investigation	443-444	Vectors	Physics	England, Italy	G	Galileo Galilei	Ethics	The study of projectile motion was driven by its applications in war. Does this negate the virtue of its study?

Chapter 19: Bivariate statistics

Historical note	455			Karl Pearson, Sir Francis Galton		
Activity 2	468		England	Francis		
-			-	Anscombe		
Theory of Knowledge	469-470	Biology,	Japan, Global		Modelling	
		Environmental	_		_	
		Science				
Theory of Knowledge	474		Equality and		Equality	
			Discrimination	1		

Chapter 20: Discrete random variables

Activity	491	Game strategy	
Investigation 1 Investigation 2	495 498		Use of technology to investigate the binomial distribution.

Chapter 21: The normal distribution

Historical note	510		Carl Friedrich Gauss	
Investigation 4	527			The normal approximation to the binomial distribution.